Reaction of 13 with Sodium 2,2,2-Trifluoroethoxide. Method A. To a stirred solution of $0.52 \mathrm{~g}(1.08 \mathrm{mmol})$ of 13 in 2 mL of benzene- d_{6} was added, at $10^{\circ} \mathrm{C}, 0.26 \mathrm{~g}(2.15 \mathrm{mmol})$ of sodium 2,2,2-trifluorethoxide and 0.57 g (2.15 mmol) of 18 -crown- 6 ether in 2 mL of benzene- d_{6}. The following spectral data were obtained after 5 min of stirring: ${ }^{31} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$ $\delta-155.7(82 \%),-159(18 \%)$. The ${ }^{19} \mathrm{~F}$ NMR spectrum has a major resonance at $\delta-80.01\left(J_{\mathrm{FCCH}}=10 \mathrm{~Hz}\right)$ and two triplets at $\delta-74.85$ $\left(J_{\mathrm{FCCH}}=8.5 \mathrm{~Hz}\right)$ and $-75.00\left(J_{\mathrm{FCCH}}=10.6 \mathrm{~Hz}\right)$.

Method B. To a stirred solution of $0.52 \mathrm{~g}(1.08 \mathrm{mmol})$ of 13 in 2 mL of hexamethylphosphorictriamide, at $10^{\circ} \mathrm{C}$, was added $0.33 \mathrm{~g}(2.7 \mathrm{mmol})$ of sodium 2,2,2-trifluoroethoxide in 2 mL of the same solvent. Immediately after mixing the ${ }^{31} \mathrm{P}$ NMR spectral data were obtained: ${ }^{31} \mathrm{P}$ NMR (external lock, $7^{\circ} \mathrm{C}$) $\delta-161.3$.

Reaction of 14 with Sodium 2,2,2-Trifluoroethoxide. To a stirred solution of $0.24 \mathrm{~g}(0.52 \mathrm{mmol})$ of 14 in 2 mL of benzene- d_{6} was added, at $10^{\circ} \mathrm{C}, 0.13 \mathrm{~g}(1.04 \mathrm{mmol})$ of sodium $2,2,2$-trifluoroethoxide and 0.28 g (1.04 mmol) of 18 -crown- 6 ether in 2 mL of benzene- d_{6}. The progress of the reaction was monitored by observing the ${ }^{31} \mathrm{P}$ NMR spectrum in $\mathrm{C}_{6} \mathrm{D}_{6}$: 2 days at room temperature, $\delta-58.5 ; 1$ day at $36^{\circ} \mathrm{C}, \delta 24.7$ (triphenylphosphine oxide, 10%), $\delta-58.5$ (90%); 2 days at $36^{\circ} \mathrm{C}, \delta 24.7$.

Reaction of 15 with Sodium 2,2,2-Trifluoroethoxide. To a stirred solution of $0.43 \mathrm{~g}(1.1 \mathrm{mmol})$ of 15 in 2 mL of benzene- d_{6} was added, $10^{\circ} \mathrm{C}, 0.27 \mathrm{~g}(2.2 \mathrm{mmol})$ of sodium $2,2,2$-trifluoroethoxide and 0.58 g (2.2 mmol) of 18 -crown- 6 ether in 2 mL of benzene- d_{6}. After 10 min
of stirring, the only absorption in the ${ }^{31} \mathrm{P}$ NMR spectrum was at $\delta-128.0$.
Reaction of 16 with Sodium 2,2,2-Trifluoroethoxide. To a stirred solution of $0.4 \mathrm{~g}(1.6 \mathrm{mmol})$ of 16 in 2 mL of benzene- d_{6} was added, at room temperature, 0.39 g (3.2 mmol) of sodium 2,2,2-trifluoroethoxide and $0.85 \mathrm{~g}(3.2 \mathrm{mmol})$ of 18 -crown- 6 ether in 2 mL of benzene- d_{6}. After 30 min of stirring at room temperature the ${ }^{31} \mathrm{P}$ NMR spectrum $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$ showed two absorptions at $\delta-102.2$ (33\%) and -105.9 (67%). The ${ }^{13} \mathrm{C}$ NMR spectrum shows strong absorptions for the 18 -crown- 6 ether and excess salt as well as complicated multiplets due to coupling to fluorine; however there are three equal-sized doublets which are well resolved. A possible assignment is $\delta 59.2\left(\mathrm{~d}, J_{\mathrm{COP}}=15.7 \mathrm{~Hz}\right)$ and $\delta 59.5\left(\mathrm{~d}, J_{\mathrm{COP}}=\right.$ 22 Hz) for the methylene carbons of the cis isomer and $\delta 59.6$ (d, $J_{\text {Cop }}$ $=11.6 \mathrm{~Hz}$) for the methylene carbons of the trans isomer. In a similar experiment, using toluene $-d_{8}$ as the solvent, conducted at $-23^{\circ} \mathrm{C}$ the following spectral data were obtained: ${ }^{31} \mathrm{P}$ NMR (toluene- d_{8}) $\delta-102.2$ (50%) and $\delta-105.9$ (50\%). After the reaction mixture was warmed to room temperature overnight, the relative precentages became 33:66.

Acknowledgment. This research has been supported by the National Science Foundation and by Public Health Service Research Grant GM 26428. We also wish to thank the Mobil Chemical Co. for funds which aided in the purchase of NMR equipment.

Formation of the Crossed Product 1,4-Disubstituted 2,3,5,6,11-Pentaoxabicyclo[5.3.1]undecane from a Mixture of Two Kinds of Ozonides in the Presence of an Acid Catalyst. Elucidation of the Intermediates in the Acidolysis of an Ozonide

Masahiro Miura, ${ }^{1 \mathbf{1 a}}$ Masatomo Nojima, ${ }^{\text {*1a }}$ Shigekazu Kusabayashi, ${ }^{\text {1a }}$ and Shigeru Nagase ${ }^{\text {lb }}$
Contribution from the Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565, Japan, and the Institute for Molecular Science, Myodaiji, Okazaki 444, Japan. Received July 7, 1980

Abstract

The reaction of a mixture of two kinds of ozonides in the presence of an acid catalyst gives the crossed 2,3,5,6,11-pentaoxabicyclo[5.3.1]undecane derivative. When a mixture of 3-phenylindene ozonide (1a) and stilbene ozonide (1e), for example, was treated with 0.03 mol equiv of $\mathrm{ClSO}_{3} \mathrm{H}$ or $\mathrm{SbCl}_{5}, 1,4$-diphenyl-9,10-benzo-2,3,5,6,11-pentaoxabicyclo[5.3.1]undecane (18) was obtained. Consistent with this result, the reaction of le with a zwitterionic intermediate 3a (prepared by treating 1a with 1 mol equiv of SbCl_{5}) gave 18 in a yield of 10%. These results have been explained by considering a mechanism which involves the initial attack of 3 a (when the catalyst is SbCl_{5}) or a similar intermediate 2 a with a carboxonium ion structure (in the case of $\mathrm{ClSO}_{3} \mathrm{H}$) on another ozonide. However, the reaction of a mixture of 1 -phenylcyclopentene ozonide (1b) and 1 -methylcyclopentene ozonide (1c) gave 1 -methyl-4-exo-(3-benzoylpropyl)-2,3,5,6,11-pentaoxabicyclo[5.3.1]undecane (20) as the sole crossed product. Consistent with this, the reaction of le with a zwitterionic intermediate $\mathbf{3 b}$ (prepared by treating $\mathbf{1 b}$ with 1 mol equiv of SbCl_{5}) gave the same product 20. The participation of the SbCl_{5}-complexed carbonyl oxide 5 b (when the catalyst is SbCl_{5}) or the protonated carbonyl oxide $\mathbf{4 b}$ (in the case of $\mathrm{ClSO}_{3} \mathrm{H}$) has been postulated to explain the result. As the model species for these postulated intermediates, the carboxonium ion $\mathbf{2 m}$ and the protonated carbonyl oxide 4 m have been investigated with an ab initio SCF-MO method.

Because of its unique structure, the chemistry of an ozonide ($1,2,4$-trioxolane) is expected to be promising. However, the synthetic use has been limited hitherto to the syntheses of ringcontraction products by thermolysis or photolysis. ${ }^{2}$ Recently we have reported that the reaction of 1 -phenylcyclopentene ozonide (1b) with catalytic amounts of $\mathrm{ClSO}_{3} \mathrm{H}$ gave 1-phenyl-4-exo-(3-benzoylpropyl)-2,3,5,6,11-pentaoxabicyclo[5.3.1]undecane (6b) (eq 1) ${ }^{3,4}$ this result seems to be novel because not only does the

[^0]
peroxide $\mathbf{6 b}$ fall into a new category of cyclic peroxides ${ }^{5}$ but also the formation of an eight-membered ring by cyclization is wellknown to be quite difficult. ${ }^{6}$ To explain the formation of $\mathbf{6 b}$, we

[^1]
Scheme I

have tentatively suggested a mechanism which involves the participation of a protonated carbonyl oxide $\mathbf{4 b}$ as the key intermediate; ${ }^{4}$ the first step of the reaction involves heterolytic fission of one of the $\mathrm{C}-\mathrm{O}$ bonds of the peroxide bridge to give a fairly stable intermediate $\mathbf{2 b}$ with a carboxonium ion structure which is followed by electron migration to afford a protonated carbonyl oxide $\mathbf{4 b}$. Subsequently, attack of $\mathbf{4 b}$ on another ozonide $\mathbf{1 b}$ occurs to yield 6b (path a in Scheme I). However, we later noticed that the same compound 6b would have been formed by the action of an intermediate 2b on 1b (path bin Scheme I).

In the light of these results, we have examined the acid-catalyzed cross coupling of ozonides 1a-h. Synthesis of a crossed

> 1a $\quad \begin{array}{ll}1 \mathrm{~b}, \mathrm{R}=\mathrm{Ph} \\ 1 \mathrm{c}, \mathrm{R}=\mathrm{Me}\end{array}$
> 1d, $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{Ph} ; \mathrm{R}^{4}=\mathrm{H}$ $1 \mathrm{e}, \mathrm{R}^{1}=\mathrm{R}^{3}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{R}^{4}=\mathrm{H}$
> 1f, $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Ph}, \mathrm{R}^{3}=$ pentyl, $\mathrm{R}^{4}=\mathrm{H}$
> $1 \mathrm{~g}, \mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{3}=$ pentyl, $\mathrm{R}^{2}=\mathrm{R}^{4}=\mathrm{H}$
> $1 \mathrm{~h}, \mathrm{R}^{1}=\mathrm{R}^{3}=$ pentyl, $\mathrm{R}^{2}=\mathrm{R}^{4}=\mathrm{H}$
product with a unique structure is of value. ${ }^{7-9}$ In addition, the intermediates, which participate in the cyclization reaction, may be elucidated on the basis of the structure of the product together with the reactivity order of ozonides in the acidic conditions. ${ }^{10}$

[^2]

Figure 1.
Table I. Formation of Pyrylium Salt from Ozonide ${ }^{a}$

ozonide	pyrylium salt			
		\% yield	UV abs, $\mathrm{nm}^{\text {b }}$	$\mathrm{mp},^{6}{ }^{\circ} \mathrm{C}$
$1 a^{c}$	12a	$35^{\text {d }}$	$\begin{aligned} & 400,333,248, \\ & 220 \end{aligned}$	214-215
1 i	12 i	45	$\begin{gathered} 416,333,253 \\ 222 \end{gathered}$	255-256
$1{ }^{e}$	12j	26^{f}	$\begin{gathered} 400,338,236, \\ 222^{g}, h \end{gathered}$	i
1k	12k	57	$\begin{aligned} & 452,307,265 \\ & 215 \end{aligned}$	$245-246^{j}$

${ }^{a}$ The pyrylium salt was obtained by the reaction of an ozonide with 2 mol equiv of SbCl_{5}, the gegenanion of which exchanged by treating it with perchloric acid in acetic acid. ${ }^{b}$ Data of the perchlorate salt unless otherwise noticed. ${ }^{c}$ UV absorption of 3a appeared at 338,250 , and 225 nm . do-Benzoylphenylacetic acid was isolated in 23% yield. ${ }^{e}$ UV absorption of 3 j appeared at 337 , 249 , and 225 nm . $f_{1-M e t h y l-1-0 \text {-benzoylphenylacetic acid (30\%) }}$ and $1 \mathrm{j}(17 \%)$ were also isolated. s Data of the hexachloroantimonate salt. h The perchlorate salt formed in solution, but was not isolate in the solid state. ${ }^{i}$ The antimonate salt did not give an exact melting point. ${ }^{j}$ Melting point in the literature is 244-245
${ }^{\circ} \mathrm{C}$: Shiner, R. L.; Knox, W. R. J. Org. Chem. 1951, 16, 1064.
As an approach to elucidate the intermediates, we have examined the isolation of a reactive intermediate from an equimolar mixture of an ozonide and SbCl_{5} in CCl_{4} and its reaction with another ozonide. As the model species for the intermediates which may participate in the coupling reaction of ozonides, an ab initio SCF-MO calculation has been carried out on the carboxonium ion $\mathbf{2 m}$ and the protonated carbonyl oxide $\mathbf{4 m}$. Of relevance to

2m

4m
$\mathbf{4 m}$, the participation of BF_{3}-complexed carbonyl oxide has been postulated by Bartlett, Baumstark, and Landis ${ }^{11}$ to explain the formation of cyclic pinacolone diperoxide from tetramethyl-1,2dioxetane.

Results and Discussions

Isolation and Reaction of Zwitterionic Intermediate 3. When a solution of 3-phenylindene ozonide (1a) (2 mmol) in CCl_{4} (10 mL) was added to a solution of SbCl_{5} (1 mol equiv) in CCl_{4} (20 mL), a yellow precipitate separated immediately. Because of its hygroscopic character and lability in solution, ${ }^{12}$ the precipitate could not be purified. However, the following facts suggest that

[^3]

Figure 2.
this compound is zwitterion 3a (Figure 1). (a) ${ }^{1} \mathrm{H}$ NMR spectrum in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ showed two doublets centered at $\delta 3.70(\sim 1 \mathrm{H}$, the separation of the peaks $=5.6 \mathrm{~Hz})$ and $4.03(\sim 1 \mathrm{H}$, the separation of the peaks $=8.0 \mathrm{~Hz}$) due to protons attached to $\mathrm{C}-5^{13}$ and the absorption of $\mathrm{H}-6$ in the region of aromatic protons. Thus, these protons were strongly deshielded compared with the corresponding protons of 1a [$\delta 3.03$ ($2 \mathrm{~d}, J=18.4$ and $0.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$), 3.38 ($2 \mathrm{~d}, J=18.4$ and $1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$), and $6.20(2 \mathrm{~d}, J=1.8$ and $0.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5)]$. These data suggest that the precipitate is not a 1:1 donor-acceptor complex between the catalyst and 1a coordinated at the peroxidic oxygen but the zwitterion 3a. ${ }^{14}$ (b) The UV absorption ($\lambda_{\max } 338 \mathrm{~nm}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ may be reasonably attributed to 3a on the basis of the fact that a solution of 2 -phenyl-1-oxonia-1-cyclopentene hexachloroantimonate in $\mathrm{CF}_{3} \mathrm{C}$ $\mathrm{O}_{2} \mathrm{H}$ shows absorption at $292 \mathrm{~nm} .{ }^{14 \mathrm{a}}$ (c) When the precipitate was treated with potassium iodide in acetic acid, iodine was liberated immediately. From a reaction mixture, o-benzoylphenylacetaldehyde (9) was isolated in a yield of $69 \% .{ }^{15}$ (d) The reaction with methanol gave a mixture of 1,1 -dimethoxy-obenzoylphenylethane (10) and methyl σ-benzoylphenylacetate (11) in yields of 14% and 17%, respectively. ${ }^{10}$ (e) When the precipitate was treated with 1 mol equiv of SbCl_{5} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2$-phenyl-3,4benzopyrylium hexachloroantimonate (12a) was obtained (Figure 1). This result and the NMR data ${ }^{16}$ strongly suggest that the precipitate is not the SbCl_{5}-complexed carbonyl oxide 5a. The reactions of $1 \mathrm{a}, 1 \mathrm{i}, 1 \mathrm{j}$, and 1 k with 2 mol equiv of SbCl_{5} gave the corresponding pyrylium salts $\mathbf{1 2 a}, \mathbf{1 2 i}, \mathbf{1 2 j}$, and $\mathbf{1 2 k}$, respectively (eq 2 and Table I). A similar zwitterionic intermediate 3b was

1a, $R^{1}=R^{2}=H$
$1 i, R^{1}=P h, R^{2}=H$
$1 j, R^{1}=M e, R^{2}=H$
$1 \mathrm{k}, \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Ph}$

12a, $R^{1}=R^{2}=H$
12i, $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{H}$
12j, $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{H}$
12k, $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Ph}$
isolated from 1b (Figure 2). The structure was also assigned on the basis of spectral and chemical properties: (a) ${ }^{1} \mathrm{H}$ NMR [δ 1.88-2.32 (m, 2 H), 2.40-2.76 (m, 2 H), 2.92-3.24 (m, 2 H), 5.98

[^4]

Figure 3. ${ }^{1} \mathrm{H}$ NMR spectrum of 18 in CDCl_{3}.

Figure 4. ${ }^{13} \mathrm{C}$ NMR spectrum of 18 in CDCl_{3}.

Figure 5. ${ }^{1} \mathrm{H}$ NMR spectrum of 20 in CDCl_{3}.

Figure 6. ${ }^{13} \mathrm{C}$ NMR spectrum of 20 in CDCl_{3}.
($\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), $7.36-7.72(\mathrm{~m}, 3 \mathrm{H}$), and $7.84-8.04$ ($\mathrm{m}, 2 \mathrm{H}$)] is consistent with the proposed structure. ${ }^{16}$ (b) Treatment with KI in acetic acid gave 5 -benzoylbutyraldehyde (13) in 68% yield. (c) When the precipitate was allowed to react with methanol, a mixture of methyl 4-benzoylbutylate (14) and 1,1-dimethoxy-4-benzoylbutane (15) was obtained in yields of 8% and 45%, respectively (Figure 2). Other ozonides 1c-h did not give, however, the similar zwitterionic intermediates in a stable form.

The reaction of 3 a with stilbene ozonide (1e) was performed at -60 to $-20^{\circ} \mathrm{C}$, and the products were isolated by column

Scheme II

chromatography on silica gel. 1,4-Diphenyl-9,10-benzo-2,3,5,6,11-pentaoxabicyclo[5.3.1]undecane (18), a cross-coupling product, was obtained in a yield of 5% along with a 8% yield of trans-3,6-diphenyl-1,2,4,5-tetroxane (7e) (Figure 1). ${ }^{17}$ When 3 b was treated with the same ozonide, 1e, a mixture of 22 and 7e was obtained in yields of 10% and 7%, respectively (Figure 2). The identity of 18 was determined by its spectra characteristics [see Experimental Section, Figures 3 (${ }^{1} \mathrm{H}$ NMR), and $4\left({ }^{13} \mathrm{C}\right.$ NMR)]. We suggest the following mechanism (path a in Scheme II) to explain the result. The first step involves the attack of the $\mathbf{C - 2}$ of 3 a on the peroxidic oxygen of $\mathbf{1 e}$, followed by electron migration and the subsequent attack of the oxygen coordinated by SbCl_{5} on the $\mathrm{C}-5$ of 1 c from the backside to give 18.

The reaction of $\mathbf{3 b}$ with 1 -methylcyclopentene ozonide (1c) afforded 1 -methyl-4-exo-(3-benzoylpropyl)-2,3,5,6,11-pentaoxabicyclo[5.3.1]undecane (20) as the sole crossed product (Figure 2). The structure of $\mathbf{2 0}$ was assigned on the basis of its spectral properties [see Experimental Section, Figures 5 (${ }^{1} \mathrm{H} N \mathrm{NR}$), and 6 (${ }^{13} \mathrm{C}$ NMR)]. The attack of the $\mathrm{C}-2$ of $\mathbf{3 b}$ on $\mathbf{1 c}$ in the first step of the reaction (path b in Scheme II), however, would afford not 20 but a 1-phenyl-4-exo-(4-ketopentyl) derivative 21. In contrast, a mechanism which involves the participation of the SbCl_{5}-complexed carbonyl oxide $\mathbf{5 b}$ seems to explain the result very well: the SbCl_{5}-complexed carbonyl oxide $\mathbf{5 b}$, formed from 3b by electron migration, attacks first the peroxidic oxygen of 1c from the endo direction, which is followed by electron migration and the subsequent attack of the oxygen coordinated by SbCl_{5} on the $\mathrm{C}-1$ of $\mathbf{1 c}$ from the front side to give 20 (path c in Scheme II).

From steric reasons the configuration of the SbCl_{5}-complexed carbonyl oxide is supposed to be anti; alkoxy carbenium ions, which have analogous structures with $\mathbf{5 b}$, exist mainly as anti forms. ${ }^{146-}$

MO Approach to the Carboxonium Ion 2 m and the Protonated Carbonyl Oxide 4m. As the model species for the two postulated intermediates in the cross cyclization of ozonides, $\mathbf{2 m}$ and $\mathbf{4 m}$ (plus formaldehyde) were investigated with the ab initio SCF-MO method. The geometries of these species were fully optimized by the energy gradient method ${ }^{18}$ with the STO-3G basis set. ${ }^{19}$ The energies at the optimized geometries were calculated with the $4-31 \mathrm{G}$ basis set. ${ }^{20}$ The equilibrium geometry (in angstroms and

[^5]
$2 m$

Figure 7.

Figure 8.
degrees) for 2 m is shown in Figure 7. The atoms $\mathrm{C}-1, \mathrm{O}-2, \mathrm{C}-3$, $\mathrm{O}-4, \mathrm{O}-5$, and $\mathrm{H}-1$ of 2 m are on the same plane, while the position of H-5 is slightly below this plane. The energy obtained was -302.339 hartrees. For the protonated carbonyl oxide 4 m , we examined the planar and the cyclic forms. ${ }^{21.22}$ The energies of
(20) Ditchfield, R.; Hehre, W. J.; Pople, J. A. J. Chem. Phys. 1971, 54, 724.
these forms were calculated to be -188.6240 and -188.5605 hartrees, respectively, the open form being more stable than the cyclic form (Figure 8). Finally, the energy of formaldehyde was -113.6917 hartrees at the equilibrium geometry of $r_{\mathrm{C}}=\mathrm{O}=1.217$ $\AA, r_{\mathrm{C}-\mathrm{H}}=1.101 \AA$, and $\angle \mathrm{HCH}=114.5^{\circ}$.

The information obtained by these calculations reveals the following. (a) The carboxonium ion intermediate 2 m is more stable than the protonated carbonyl oxide 4 m plus formaldehyde in a value of $15.1 \mathrm{kcal} / \mathrm{mol}$. If the entropy term is taken into account (+40 eu by dissociation in the gas phase, which corresponds to $12 \mathrm{kcal} / \mathrm{mol}$ at 300 K$){ }^{23}$ the energy difference becomes as small as $3.1 \mathrm{kcal} / \mathrm{mol}$. (b) The charge density on C-3 of $\mathbf{2 m}$ $(+0.16)$ is significantly large, and approach of nucleophile to this position is quite probable, though the $\mathrm{C}-1$ of $\mathbf{2 m}(+0.25)$ and the $\mathrm{C}-1$ of $\mathbf{4 m}(+0.26)$ may be more reactive for a nucleophile. (c) The proton attached to the peroxidic oxygen in $2 \mathrm{~m}(+0.25)$ and also that in $\mathbf{4 m}(+0.33)$ are quite acidic, and the proton transfer from these species to a nucleophile is expected to be very easy.

On the basis of these data we would like to discuss $2 \mathbf{b}$ and $\mathbf{4 b}$. For the following reasons the difference in the energy between $\mathbf{2 b}$ and $\mathbf{4 b}$ is expected to be larger than that of the model species considered above. (a) Conformational reasons lead to the wellknown fact that the six-membered carboxonium ion is more stable than the open form..24 (b) Stabilization due to the increase of entropy by ring opening is ca. $7 \mathrm{kcal} / \mathrm{mol}$ in the gas phase. ${ }^{25}$ Furthermore, the effect of the entropy term is smaller in solution compared with that in gas phase. ${ }^{23}$ Thus, $\mathbf{2 b}$ is more stable than 4b by more than $8 \mathrm{kcal} / \mathrm{mol}$, which suggests that $\mathbf{4 b}$ does not seem to exist as a stable intermediate. ${ }^{26}$ This conclusion is consistent with the fact that the reaction of $\mathbf{1 b}$ with SbCl_{5} in CCl_{4} gave 3b in a stable form. These facts, however, do not seem to exclude the possibility that $\mathbf{4 b}$ formed from $\mathbf{2 b}$ by electron migration works as a transient species in the favorable conditions.

Acid-Catalyzed Cross Coupling of Ozonides. The ozonides 3-phenylindene ozonide (1a), 1-phenylcyclopentene ozonide (1b), 1 -methylcyclopentene ozonide (1c), triphenylethylene ozonide (1d), stilbene ozonide (1e), 1,1-diphenylheptene 1-ozonide 1f), 1phenylheptene 1 -ozonide (1 g), and dodecene 6 -ozonide (1 h) were used for the objective reaction. For the formation of the crossed 2,3,5,6,11-pentaoxabicyclo[5.3.1]undecane derivative, it was necessary to use a bicyclic ozonide ($\mathbf{1 a}, \mathbf{1 b}$ or $1 \mathbf{c}$) paired to another ozonide. ${ }^{27}$ Thus, we investigated the reactions for 17 kinds of combinations of the ozonides (Table II). The reaction was performed as follows. To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution containing two kinds of ozonides in the molar ratio of $1: 1$ was added 0.03 mol equiv

[^6]Table II. Acid-Catalyzed Cross Coupling of Ozonides ${ }^{\boldsymbol{a}}$

pair of ozonides	catalyst	product (\% y ield)
1a	$\mathrm{ClSO}_{3} \mathrm{H}$	$7 \mathrm{a}(9){ }^{c, l}$
1 a	SbCl_{5}	$7 \mathrm{a}(30)^{d, l}$
$1 a+1 b$	$\mathrm{ClSO}_{3} \mathrm{H}^{e}$	16 (15), 6b (29)
$1 a+1 b$	$\mathrm{SbCl}_{5}{ }^{\text {f }}$	16 (12), 7b (10)
$1 a+1 c$	$\mathrm{ClSO}_{3} \mathrm{H}$	17 (4), 6c (46)
$1 a+1 c$	$\mathrm{SbCl}_{5}{ }^{\text {e }}$	17 (8), 6c (27), 7a (35)
$1 \mathrm{a}+1 \mathrm{~d}$	$\mathrm{ClSO}_{3} \mathrm{H}$	18 (25), 26 (88)
$1 a+1 e$	$\mathrm{ClSO}_{3} \mathrm{H}$	18 (25), 7e (2)
$1 \mathrm{a}+1 \mathrm{e}$	SbCl_{5}	18 (4), 7e (7)
$1 \mathrm{a}+1 \mathrm{f}$	$\mathrm{ClSO}_{3} \mathrm{H}$	19 (25), 26 (85)
$1 a+1 g$	$\mathrm{ClSO}_{3} \mathrm{H}^{\mathrm{g}}$	18 (20), 19 (13), 1g (20)
$1 \mathrm{a}+1 \mathrm{~h}$	$\mathrm{ClSO}_{3} \mathrm{H}$	1 h (64)
$1 a+1 h$	SbCl_{5}	19 (3), 7a (28), 1h (58)
1 b	$\mathrm{ClSO}_{3} \mathrm{H}$	6b (45) ${ }^{h, l}$
1 b	SbCl_{5}	8 b (35), 7 b (20) ${ }^{l}$
1 b	$\mathrm{SbCl}_{5}{ }^{\text {i }}$	6b (48)
$1 b+1 c$	$\mathrm{ClSO}_{3} \mathrm{H}$	20 (14), 6b (25), 6c (31)
$1 b+1 c$	SbCl_{5}	20 (34), 6b (2), 6c (25), 7b (3)
$1 \mathrm{~b}+1 \mathrm{~d}$	$\mathrm{ClSO}_{3} \mathrm{H}$	22 (13), 6b (47), 26 (84)
$1 b+1 e$	$\mathrm{ClSO}_{3} \mathrm{H}$	22 (19), 6b (27), 7e (3)
$1 b+1 e$	SbCl_{5}	22 (6), 7b (18), 7e (6)
$1 \mathrm{~b}+1 \mathrm{f}$	$\mathrm{ClSO}_{3} \mathrm{H}$	23 (11), 6b (40), 1f (17), 26 (73)
$1 b+1 g$	$\mathrm{ClSO}_{3} \mathrm{H}$	22 (8), 23 (12), 6b (34), 1g (29)
$1 b+1 g$	SbCl_{5}	7b (25), 7h (32)
$1 \mathrm{~b}+1 \mathrm{~h}$	$\mathrm{ClSO}_{3} \mathrm{H}$	6b (52), 1h (85)
$1 b+1 h$	SbCl_{5}	8b (8), 7b (14), 7h (18)
1 c	$\mathrm{ClSO}_{3} \mathrm{H}$	$6 \mathrm{c}(45)^{k, l}$
1 c	SbCl_{5}	6c (32), 7c (29) ${ }^{\text {k,l }}$
$1 \mathrm{c}+1 \mathrm{e}$	$\mathrm{ClSO}_{3} \mathrm{H}$	23 (10), 6c (29), 1c (19), 1e (25)
$1 \mathrm{c}+1 \mathrm{f}$	$\mathrm{ClSO}_{3} \mathrm{H}$	6c (44), 1f (12), 26 (74)
$1 \mathrm{c}+1 \mathrm{~g}$	$\mathrm{ClSO}_{3} \mathrm{H}$	24 (5), 25 (5), 6c (42), 1g (36)
$1 \mathrm{c}+1 \mathrm{~h}$	$\mathrm{ClSO}_{3} \mathrm{H}$	6c (53), 1h (82)

${ }^{a}$ A mixture of ozonides was treated with 0.03 mol equiv of the catalyst in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $20^{\circ} \mathrm{C}$. The reaction with $\mathrm{ClSO}_{3} \mathrm{H}$ was performed for 1 h , and, in contrast, the reaction with SbCl_{5} was performed for 30 min unless otherwise specified. ${ }^{b}$ The yield of the peroxide products was calculated by considering that 1 mol of the product forms from 2 mol of ozonide. Yields of other products show mole percent yield. c_{o}-Benzoylphenylacetic acid was obtained in 42% yield along with the polymeric products. ${ }^{d}$ The byproduct was o-benzoylphenylacetic acid (17\%). ${ }^{e}$ The reaction was performed for 10 min . f The reaction mixture was kept at $20^{\circ} \mathrm{C}$ for 5 min . ${ }^{g}$ The reaction was performed for $2 \mathrm{~h} .{ }^{h} 4$-Benzoylbutanoic acid (10%) was isolated as the byproduct. ${ }^{i}$ The reaction was performed at $-30^{\circ} \mathrm{C}$ for 1 h . ${ }^{j} 4$-Benzoylbutyraldehyde (14%) and $1 \mathrm{~b}(20 \%)$ were isolated. ${ }^{*} 5$-Ketohexanoic acid was the byproduct. ${ }^{l}$ Data taken from ref 4 .
of a catalyst $\left(\mathrm{SbCl}_{5}\right.$ or $\left.\mathrm{ClSO}_{3} \mathrm{H}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in one portion, and the reaction mixture was kept at $20^{\circ} \mathrm{C}$ for an appropriate time. After conventional workup the products were isolated by column chromatography on silica gel.

The reaction of a mixture of $\mathbf{1 a}$ and $\mathbf{1 e}$ in the presence of $\mathrm{ClSO}_{3} \mathrm{H}$ gave 18 (25%) along with $7 \mathrm{e}(2 \%)$. It should be noted

${ }^{6}$

$$
6 \mathrm{~b}, \mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{PhCO}\left(\mathrm{CH}_{2}\right)_{3}
$$

$$
6 \mathrm{c}, \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{MeCO}\left(\mathrm{CH}_{2}\right)_{3}
$$

7
7a, $\mathrm{R}=o$-benzoylbenzyl $7 \mathrm{~b}, \mathrm{R}=\mathrm{PhCO}\left(\mathrm{CH}_{2}\right)_{3}$ $7 \mathrm{c}, \mathrm{R}=\mathrm{MeCO}\left(\mathrm{CH}_{2}\right)_{3}$ 7e, $\mathrm{R}=\mathrm{Ph}$
7h, $\mathrm{R}=$ pentyl

26
that 18 was obtained by the reaction of 1 e with 3 a which had been

Scheme III

previously isolated (Figure 1). The reaction of 1a with 1d also gave 18. The peroxide 19 was obtained by the reaction of a mixture of 1 a and the monocyclic ozonide 1 f or $\mathbf{1 h}$. The reaction of 1 a with 1 g gave a mixture of 18 and 19 (eq 3 and Table II).

1d, 1e, 1f, $\frac{\text { 1d, 1e, 1f, }}{\text { 18, or 1h }}$ acid catalysi

$18, \mathrm{R}=\mathrm{Ph}$
19, R = pentyl
(3)

When 1b was treated with a monocyclic ozonide ($\mathbf{1 d} \mathbf{d} \mathbf{g}$), we obtained 22 and/or 23 (eq 4 and Table II). The reaction of $\mathbf{1 c}$ with

nocyclic ozonide (1d-g) gave 24 and/or 25 (eq 5 and Table

$$
\begin{aligned}
& 24, \mathrm{R}=\mathrm{Ph} \\
& 25, \mathrm{R}=\text { pentyl }
\end{aligned}
$$

II). Considering the higher reactivity of a bicyclic ozonide compared with a monocyclic ozonide, ${ }^{10}$ the $\mathrm{C}-\mathrm{O}$ bond of a bicyclic ozonide must be cleaved predominantly in the first step of the reaction to form a carboxonium ion intermediate. Attack of 2a on 1 e is reasonably expected to give 18 (Scheme III): It is possible to bring the intermediate 2 a and the ozonide 1e into positions favorable to ring closure. In other words, cleavage of the $\mathrm{C}-\mathrm{O}$ bond of 1 e by the attack of the SP^{2} carbon of 2 a on 1 e may be assisted by the nucleophilic attack of the peroxidic oxygen of 2 a on the slightly charge-developed C-5 of 1 e . In addition, a proton or SbCl_{5} attached to a peroxidic oxygen of 2 a and a proton or SbCl_{5} to that of 3a, respectively, may be transferred to an ozonide in excess before cyclization to increase the nucleophilicity of the peroxidic oxygen and also to decrease the steric hindrance in the ring closure. This may be a part of the reason that the reaction of the isolated intermediate 3 a with 1 mol equiv of 1 e gave 18 in lower yield compared with the reaction of a mixture of $\mathbf{1 a}$ and $\mathbf{1 e}$ in the presence of catalytic amounts of an acid. In the former case there is not an excess of ozonide. An oxygen atom effect may be also a reason for the smooth formation of a crossed product with an eight-membered ring. The bond opposite force and transannular interaction in the cyclic compound containing five oxygen atoms are expected to be significantly small compared with the case of cyclooctane. The influence of the oxygen atom on ease of ring closure has been observed in the cyclization of $o-\omega$-bromoalkoxy phenoxide and $o-\omega$-bromoalkyl phenoxide; $k_{\text {intra }}$ diether $/ k_{\text {intra moncether }}$ ratio at $50^{\circ} \mathrm{C}$ for the formation of an eight-mëmbered ring is $6.42 .{ }^{6}$ The byproduct 7 e may come from unreacted 1 e in the first stage of the reaction. ${ }^{4}$

When a mixture of $\mathbf{1 a}$ and $\mathbf{1 b}$ was allowed to react with 0.03 mol equiv of $\mathrm{ClSO}_{3} \mathrm{H}$ for 10 min , 1-phenyl-4-exo-(3-benzoyl-

Scheme IV

propyl)-9,10-benzo-2,3,5,6,11-pentaoxabicyclo[5.3.1]undecane (16) was obtained in a yield of 15% along with a 29% yield of $\mathbf{6 b}$. Similarly, the reaction of a mixture of 1a and 1 c yielded 17 (eq 6). If the assumption is valid that 1 a is more reactive than

$$
\begin{aligned}
& \text { 16, } \mathrm{R}=\mathrm{PhCO}\left(\mathrm{CH}_{2}\right)_{3} \\
& 17, \mathrm{R}=\mathrm{MeCO}\left(\mathrm{CH}_{2}\right)_{3}
\end{aligned}
$$

$\mathbf{1 b}$ and $\mathbf{1 c},{ }^{10}$ the key intermediate in the above reactions should be 2 a . The formation of 16 or $\mathbf{1 7}$ is reasonably explained by considering the attack of the $\mathrm{C}-2$ of $\mathbf{2 a}$ on $\mathbf{1 b}$ and $\mathbf{1 c}$, respectively (Scheme IV). In contrast, the reaction of a mixture of $\mathbf{1 b}$ and 1c in the presence of $\mathrm{ClSO}_{3} \mathrm{H}$ gave 1-methyl-4-exo-(3-benzoyl-propyl)-2,3,5,6,11-pentaoxabicyclo[5.3.1]undecane (20) as the sole crossed product in a yield of 14% along with $6 \mathrm{~b}(25 \%)$ and 1 -methyl-4-exo-(4-ketopentyl)-2,3,5,6,11-pentaoxabicyclo[5.3.1]undecane (6 c) (31%) (eq 7). When SbCl_{5} was used as the

catalyst, 20 was obtained in a yield of 34% along with $\mathbf{6 b}$ (2%), 6c (25\%), and trans-3,6-bis(3-benzoylpropyl)-1,2,4,5-tetroxane (7b) (3\%): No evidence was obtained, however, for the formation of 21, the compound which would be formed by the attack of the $\mathrm{C}-2$ of $\mathbf{3 b}$ on $\mathbf{1 c}$ (path b in Scheme II). It should be noticed that 20 was obtained by the reaction of $1 \mathbf{c}$ with the zwitterion $\mathbf{3 b}$ previously isolated, too (Figure 2). As mentioned before, a mechanism which involves the attack of a SbCl_{5}-complexed carbonyl oxide 5b on 1c (path cin Scheme II) seems to be most probable to explain the result. The question then arises why the reaction of a mixture of $\mathbf{1 b}$ and $1 \mathbf{c}$ proceeds differently. The molecular models suggest that the approach of a carboxonium ion 3b to 1c from the endo direction (path b in Scheme II) is quite difficult because of the large interaction between the methylene group of $\mathbf{3 b}$ and the peroxidic oxygen of $\mathbf{1 c}$ along with the interaction between the methylene group of $\mathbf{1 c}$ and the $\mathrm{O}-1$ of $\mathbf{3 b}$. The former interaction does not exist in the reaction of 3 a with 1c (Scheme IV). These may be the reasons why 3b reacts with 1c via the less stable $5 \mathbf{b}$: approach of the peroxidic oxygen of $\mathbf{1 c}$ to the electrophilic C-6 of 3b may render cleavage (or weakening ${ }^{28}$) of the $\mathrm{C}-\mathrm{O}$ bond of $\mathbf{3 b}$ and change the hybrid of $\mathrm{C}-6$ to sp^{2} to form $\mathbf{5 b}$. From the view of steric hindrance, this intermediate or, more likely, transition state $\mathbf{5 b}$, compared with $\mathbf{3 b}$, attacks more easily the crowded peroxidic oxygen of 1c. Thus, the formation of a $\mathbf{C}-\mathrm{O}$ bond between $\mathbf{5 b}$ and $\mathbf{1 c}$ occurs which is accompanied by the attack of the terminal oxygen of $\mathbf{5 b}$ on the highly electrophilic C-I of 1 c to give $\mathbf{2 0}$.

[^7]Scheme V

In the reaction of a mixture of $\mathbf{1 b}$ and $\mathbf{1 c}$, the dependency of the product composition on catalyst is remarkable. The $20 /(\mathbf{b}$ $+7 b)$ ratio found in the reaction with SbCl_{5}, which is considered to be the ratio of $\mathbf{1 c}$ to $\mathbf{1 b}$ attacked by $\mathbf{5 b}$, is ca. 7 . In contrast, the $20 / 6 \mathrm{~b}$ ratio is ca .0 .6 when $\mathrm{ClSO}_{3} \mathrm{H}$ is the catalyst. These results strongly suggest that the SbCl_{5}-complexed carbonyl oxide $\mathbf{5 b}$, compared with the protonated carbonyl oxide $\mathbf{4 b}$, is prone to attack the less reactive ozonide 1 c . The existence of a large interaction between the phenyl ring of $\mathbf{1 b}$ and SbCl_{5}, attached to the peroxidic oxygen of $\mathbf{5 b}$, may not allow $\mathbf{5 b}$ to occupy a favorable position to attack the peroxidic oxygen of $\mathbf{1 b}$ with simultaneous cyclization (the structure of a possible intermediate may be shown as 27 in Scheme V). In contrast, the interaction of the methyl of $1 \mathbf{c}$ with SbCl_{5} of 5 b is not so large, and the cyclization reaction is expected to proceed smoothly to afford 20. In the case of $\mathbf{4 b}$ such an interaction is small, and this species attacks predominantly the more reactive ozonide $\mathbf{1 b}$ to give $\mathbf{6 b}$.

Of relevance to the above results, the product composition in the reaction of $\mathbf{1 b}$ depends remarkably on reaction temperature and catalyst. (a) The reaction with SbCl_{5} at $-30^{\circ} \mathrm{C}$ gave 6 b in a yield of 48% (eq 9). (b) On treatment with $\mathrm{ClSO}_{3} \mathrm{H}$ at $20^{\circ} \mathrm{C}, 6 \mathrm{~b}$ was

obtained in a yield of $45 \%{ }^{4}$ (c) When the reaction with SbCl_{5} was performed at $20^{\circ} \mathrm{C}$, however, a mixture of cis-3,6-bis(3-benzoylpropyl)-1,2,4,5-tetroxane (8b) and the trans isomer $7 \mathbf{7 b}$ was obtained in yields of 35% and 20%, respectively (eq 10). ${ }^{4}$ It was

also confirmed that $\mathbf{6 b}$ is not the precursor of $\mathbf{8 b}$. The mechanism
in Scheme V may be the most probable explanation of these results. The SbCl_{5}-complexed carbonyl oxide $\mathbf{5 b}$ attacks $\mathbf{1 b}$ from the endo direction to form the intermediate 27. At $20^{\circ} \mathrm{C}$ the rotation of the $\mathrm{C}-\mathrm{O}$ bond may occur first; this is followed by the transfer of SbCl_{5} to another ozonide and the subsequent ring closure to afford $\mathbf{8 b}$ (path a in Scheme V). ${ }^{29}$ In contrast, the rotation of the $\mathrm{C}-\mathrm{O}$ bond is slowed down at $-30^{\circ} \mathrm{C}$ and, as the result, the transfer of SbCl_{5} to another ozonide occurs first and is followed by ring closure to yield $\mathbf{6 b}$ (path b in Scheme V). The less bulky protonated carbonyl oxide $\mathbf{4 b}$ seems to be able to hold an advantageous position to attack the peroxidic oxygen of $\mathbf{1 b}$ with simultaneous ring closure. A mechanism which involves attack of 5 b on 1 b from the exo direction (path c in Scheme V) has been tentatively proposed to explain the formation of $\mathbf{8 b} .{ }^{4}$ However, paths a and b in Scheme V seem to explain the results more rationally.
The data seem to contain some additional information. (a) In spite of the possibility of formation of two configurationally isomeric products, only one isomer was isolated in all the reactions. The coupling constants of H-4 suggest that 16, 17, 19, 20, 23, and $\mathbf{2 5}$ are the compounds with an exo configuration. ${ }^{4}$ Scheme IV suggests that the reaction of 1 a with 1 c gives the product 17 with an exo configuration. The crossed compound 20 is also expected to be formed stereoselectively from the proposed reaction scheme (path c in Scheme II).

However, the reason is obscure why the reaction of 1a with a flexible ozonide $\mathbf{1 h}$, for example, gives only the exo isomer 19. Of course the compound with an exo configuration is expected to be more stable than the endo isomer from steric reasons. (b) As is expected from the relative stability of carbonium ions, one of the $\mathrm{C}-\mathrm{O}$ bonds of the peroxide bridge of 1 d seems to be cleaved selectively by the carboxonium ion 2 . Thus, the reaction of a mixture of 1 a and 1 d , for example, affords 18 in a yield of 25% along with a 88% yield of benzophenone (26). Similarly, 19 is the sole crossed product in the reaction of a mixture of $\mathbf{1 f}$ and 1a. However, the reaction of 1 g with 1a gave both 18 (20\%) and $19(13 \%)$. As is expected from the poor reactivity, the coupling product was obtained in low yield when 1 h was used to pair to another ozonide.

Experimental Section

General Procedures. ${ }^{1} \mathrm{H}$ NMR spectra were obtained with a JNM-PS-100 spectrometer in $\mathrm{CDCl}_{3},{ }^{13} \mathrm{C}$ NMR with a JEOL-EX-60 at 15.03 MHz in CDCl_{3} at $21^{\circ} \mathrm{C}$ with the use of pulse Fourier transfer technique, MS with a Hitachi RMU-6H spectrometer, and infrared spectra with a Hitachi 215 spectrometer. Ozonolyses were carried out with use of a Nippon Ozone Model 0-1-2 ozonator.
Ozonolysis. The procedure has been described previously. ${ }^{4}$ From 1,3-diphenylindene, the ozonide 1 j was obtained: mp 103-104 ${ }^{\circ} \mathrm{C}$ (from methanol); NMR $\delta 4.16$ (s, 1 H), 5.92 ($\mathrm{s}, 1 \mathrm{H}$), 6.68-7.68 (m, 14 H); IR (KBr) $1480,1455,1320,1285,1200,1110,1010,970,760,700 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}_{3}: \mathrm{C}, 79.93 ; \mathrm{H}, 5.10$. Found: $\mathrm{C}, 79.62 ; \mathrm{H}, 4.82$. The ozonolysis of 1 -methyl-3-phenylindene gave the ozonide 1 j : mp 106-107 ${ }^{\circ} \mathrm{C}$ (from methanol); NMR $\delta 1.46$ (d, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}$), 3.12 (q, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $5.96(\mathrm{~s}, 1 \mathrm{H}), 6.64-7.72(\mathrm{~m}, 9 \mathrm{H}) ; \operatorname{IR}(\mathrm{KBr}) 1450$, $1320,1205,1030,970,760 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{3}: \mathrm{C}, 75.58$; $\mathrm{H}, 5.55$. Found: C, 75.42; H, 5.42. Ozonides 1a, ${ }^{30} 1 \mathrm{lb},{ }^{31} 1 \mathrm{c},{ }^{32} \mathrm{ld},{ }^{31} 1 \mathrm{e},{ }^{31}$ $1 f,{ }^{4} 1 \mathrm{~g},{ }^{4} \mathbf{1 h},{ }^{4}$ and $1 \mathbf{k}^{33}$ were prepared according to the reported methods. Isolation and Reaction of Zwitterionic Intermediate. To a solution of $\mathrm{SbCl}_{5}(2 \mathrm{mmol})$ in $\mathrm{CCl}_{4}(20 \mathrm{~mL})$ was added a solution of 3-phenylindene ozonide (1a) (2 mmol) in CCl_{4} (10 mL) at $-20^{\circ} \mathrm{C}$ in one portion, and the mixture was stirred for 5 min . The precipitate 3 a was filtered and washed with chilled CCl_{4}. The salt $\mathbf{3 b}$ was prepared similarly.

The reaction of the salt 3a was performed as follows. To methanol (30 mL) kept at $-60^{\circ} \mathrm{C}$ was added the precipitate 3 a (from 2 mmol of the ozonide 1a) in one portion. The mixture was allowed to warm to - 20 ${ }^{\circ} \mathrm{C}$, and the reaction was continued for a further 30 min at this tem-

[^8]perature. After conventional workup, the products were isolated by column chromatography on silica gel. Elution with benzene gave 1,1 -dimethoxy-2-o-benzoylphenylethane (10) in a yield of 14\%: an oil; IR (KBr) $1660,1445,1270,1120,1065,920,760 \mathrm{~cm}^{-1} ;$ NMR $\delta 3.02$ (d, J $=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.18(\mathrm{~s}, 6 \mathrm{H}), 4.48(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.88(\mathrm{~m}$, $14 \mathrm{H}) ; m / e 270\left(\mathrm{M}^{+}\right)$. The physical properties were identical with those of an authentic sample prepared by the reaction of o-benzoylphenylacetaldehyde (9) with methanol in the presence of $\mathrm{ClSO}_{3} \mathrm{H}$. Elution with benzene-ether ($1: 1$) gave methyl o-benzoylphenylacetate (11): mp $70.0-70.5^{\circ} \mathrm{C}$ (from methanol) (lit. ${ }^{34} 70.0-70.5^{\circ} \mathrm{C}$); NMR $\delta 3.52$ (s, 3 H), $3.86(\mathrm{~s}, 2 \mathrm{H}), 7.16-8.88(\mathrm{~m}, 9 \mathrm{H})$; IR (KBr) $1740,1660,1600,1445$, $1270,1170,760,700 \mathrm{~cm}^{-1}$. The reaction of 3 b with methanol gave a mixture of 1,1-dimethoxy-4-benzoylbutane (15) (45\%) and methyl 4benzoylbutylate (14) (8\%). The acetal was an oil: IR (neat) 1685,1450 , $1205,1065,755 \mathrm{~cm}^{-1}$; NMR $\delta 1.52-1.92(\mathrm{~m}, 4 \mathrm{H}), 2.92(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 3.24(\mathrm{~s}, 6 \mathrm{H}), 4.32(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.50(\mathrm{~m}, 3 \mathrm{H})$, $7.80-7.92(\mathrm{~m}, 2 \mathrm{H})$. The ester was also an oil: $m / e 206\left(\mathrm{M}^{+}\right)$; IR (neat) 1730, 1680, 1440, 1205, $745 \mathrm{~cm}^{-1}$; NMR $\delta 1.80-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.02(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 7.20-7.64$ (m, 3 H), 7.82-8.40 (m, 2 H).

When the solid 3a (from 2 mmol of 1a) was treated with a solution of $\mathrm{KI}(5 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}(20 \mathrm{~mL})$, the aldehyde 9 was obtained in a yield of 69% : an oil; IR (neat) $1720,1660,1480,1440,1260,920,700$ cm^{-1}. The aldehyde was characterized by oxidizing it to o-benzoylphenylacetic acid; mp $130-131^{\circ} \mathrm{C} .{ }^{4}$ The reaction of 3 b in the same conditions afforded 4-benzoylbutyraldehyde (13) in a yield of 68%.

To a solution of $\mathrm{SbCl}_{5}(2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added 3 a (from 2 mmol of 1 a) in one portion; the mixture was stirred at $20^{\circ} \mathrm{C}$ for 30 min and then triturated with petroleum ether (20 mL). The pyrylium salt 12a was filtered and dried over CaCl_{2} in vacuo. The trial to purify the solid by recrystallization failed. However, treatment of the solid with a mixture of perchloric acid (3 mL), acetic acid (10 mL), and ether (10 mL) yielded the pure perchlorate salt.

To a solution of stilbene ozonide (1e) (2 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} \mathrm{kept}$ at -60 ${ }^{\circ} \mathrm{C}$ was added 3 a (from 2 mmol of 1 a) in one portion; the mixture was allowed to warm to $-20^{\circ} \mathrm{C}$ in 5 min and was then poured into ice-cold aqueous potassium hydroxide and extracted with ether. After conventional workup the neutral products were isolated by column chromatography on silica gel. Elution with petroleum ether-benzene (1:1) afforded 1,4-diphenyl-9,10-benzo-2,3,5,6,11-pentaoxabicyclo[5.3.1]undecane (18): $\mathrm{mp} 189-190^{\circ} \mathrm{C}$ (from methanol); ${ }^{1} \mathrm{H}$ NMR $\delta 3.02$ (d, $J=19.2 \mathrm{~Hz}, 1$ $\mathrm{H}, \mathrm{H}-8$), 3.78 ($2 \mathrm{~d}, J=19.2$ and $6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8$), 6.10 (d, $J=6.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-7), 6.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 6.83-7.92(\mathrm{~m}, 14 \mathrm{H})$ (Figure 3); ${ }^{13} \mathrm{C}$ NMR $\delta 28.289$ (C-8), 98.258 (C-4), 108.584 (C-7) (Figure 4); IR (KBr) $1450,1260,1200,1120,1020,1000,965,750,690 \mathrm{~cm}^{-1} ; m / e 362\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}_{5}$: $\mathrm{C}, 72.92 ; \mathrm{H}, 5.01$. Found: $\mathrm{C}, 73.27 ; \mathrm{H}, 4.94$. Elution with ether gave only a complex mixture containing 9 and benzaldehyde, and the trial to identify the products failed. The reaction of 3b with le gave 1,4-diphenyl-2,3,5,6,11-pentaoxabicyclo[5.3.1]undecane (22) (10%) along with $1 \mathrm{e}(25 \%)$ and $7 \mathrm{e}(8 \%)$. The compound 22 was a solid: mp $134-135^{\circ} \mathrm{C}$ (from methanol); m/e $314\left(\mathrm{M}^{+}\right)$; NMR δ $1.40-2.36(\mathrm{~m}, 6 \mathrm{H}), 5.73(\mathrm{~s}, 1 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 7.08-7.76(\mathrm{~m}, 10 \mathrm{H})$; IR (KBr) $1490,1445,1350,1310,1260,1210,1120,1045,1000,930$, $760,695 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{5}: \mathrm{C}, 68.75 ; \mathrm{H}, 5.77$. Found: $\mathrm{C}, 68.58 ; \mathrm{H}, 5.70$. The reaction of 3 b with 1 c gave a mixture of 1 -methyl-4-exo-(3-benzoylpropyl)-2,3,5,6,11-pentaoxabicyclo[5.3.1]undecane (20), 6c, and 1 c in yields of $14 \%, 30 \%$, and 10%, respectively. The compound 20 was a solid: mp $92-93^{\circ} \mathrm{C}$ (from methanol); $m / e 322$ $\left(\mathrm{M}^{+}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.52-2.16(\mathrm{~m}, 10 \mathrm{H}), 3.02(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{PhCOCH} 2), 5.38(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}-7), 5.64(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-4$), 7.32-7.68 (m, 3 H), 7.86-8.08 (m, 2 H) (Figure 5); IR (KBr) $1675,1445,1375,1310,1200,1150,1110,1045,1000,930,880,730$, $690 \mathrm{~cm}^{-1} ;{ }^{13} \mathrm{C}$ NMR $\delta 13.929\left(\mathrm{CH}_{3}\right), 19.415,24.578,25.223,28.020$, $28.988,30.870,37.755\left(\mathrm{CH}_{2}\right), 97.883(\mathrm{C}-4), 102.078(\mathrm{C}-7), 108.584$ $(\mathrm{C}-1), 199.209(\mathrm{C}=\mathrm{O})$ (Figure 6). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{6}: \mathrm{C}, 63.34$; H, 6.88. Found: C, 63.36; H, 6.93.

Reaction of 1 a with 1 b or 1 c in the Presence of $\mathrm{CLSO}_{3} \mathrm{H}$. To a solution of 1a (2 mmol) and 1b (2 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}$) was added a solution of $\mathrm{ClSO}_{3} \mathrm{H}(0.06 \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ in one portion, and the reaction was continued at $20^{\circ} \mathrm{C}$ for 10 min . After workup the neutral products were chromatographed on silica gel with the use of $10: 1$ benzene-ether. The first fraction contained 1-phenyl-4-exo-(3-benzoylpropyl)-9,10-benzo-2,3,5,6,11-pentaoxabicyclo[5.3.1]undecane (16): $\mathrm{mp} 109-110{ }^{\circ} \mathrm{C}$ (from methanol); $m / e 432\left(\mathrm{M}^{+}\right) ;$NMR δ $1.52-2.12(\mathrm{~m}, 4 \mathrm{H}), 2.94(\mathrm{~d}, J=18.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2$ H), $3.54(2 \mathrm{~d}, J=18.6$ and $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.96$ (d, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 6.74-8.04 (m, 14 H); IR (KBr) $1685,1450,1260$,
$1205,1120,1020,760,700 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{O}_{6}: \mathrm{C}, 72.21$; H, 5.59. Found: $\mathrm{C}, 71.80 ; \mathrm{H}, 5.47$. The second fraction contained 1-phenyl-4-exo-(3-benzoylpropyl)-2,3,5,6,11-pentaoxabicyclo[5.3.1]undecane (6b): mp $144-145{ }^{\circ} \mathrm{C} .{ }^{4}$

When a mixture of 1a and 1 c was treated with 0.3 mol equiv of $\mathrm{ClSO}_{3} \mathrm{H}$ at $20^{\circ} \mathrm{C}$ for $1 \mathrm{~h}, 17$ (4\%) and $\mathbf{6 c}(46 \%)$ were obtained. 1-Phenyl-4-exo-(5-ketopentyl)-9,10-benzo-2,3,5,6,11-pentaoxabicyclo[5.3.1]undecane (17) was a solid: $\mathrm{mp} 107-108^{\circ} \mathrm{C}$ (from methanol); m / e $370\left(\mathrm{M}^{+}\right)$; NMR $\delta 1.40-1.88(\mathrm{~m}, 4 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{t}, J=6.0$ $\mathrm{Hz}, 2 \mathrm{H}), 2.94(\mathrm{~d}, J=19.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(2 \mathrm{~d}, J=19.5$ and 6.0 Hz , $1 \mathrm{H}), 5.64(\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.72-7.72$ (m, 9 H); IR (KBr) $1710,1450,1260,1120,1060,755,715 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{6}: \mathrm{C}, 68.10 ; \mathrm{H}, 5.99$. Found: $\mathrm{C}, 67.91 ; \mathrm{H}, 6.01$. The compound 6 c was obtained as an oil. ${ }^{4}$

Reaction of a Mixture of la and Dodecene 6-Ozonide (1h) with SbCl_{5}. The reaction of a mixture of $1 \mathrm{a}(2 \mathrm{mmol})$ and $1 \mathrm{~h}(2 \mathrm{mmol})$ with SbCl_{5} (0.06 mmol) was performed at $20^{\circ} \mathrm{C}$ for 30 min . After workup the neutral products were isolated by column chromatography on silica gel. Elution with benzene-petroleum ether gave $1 \mathrm{~h}(58 \%)$. Elution with benzene afforded 1-phenyl-4-exo-pentyl-9,10-benzo-2,3,5,6,11-pentaoxabicyclo[5.3.1] undecane (19): $\mathrm{mp} 84-85^{\circ} \mathrm{C}$ (from methanol); $m / e 356$ $\left(\mathrm{M}^{+}\right)$; NMR $\delta 0.84(\mathrm{t}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.04-1.72(\mathrm{~m}, 8 \mathrm{H}), 2.94$ (d, $J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(2 \mathrm{~d}, J=18.0$ and $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{t}, J=$ $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.72-7.76(\mathrm{~m}, 9 \mathrm{H})$; IR (KBr) 1445, 1260, 1200, 1105, 1010, 750, $695 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{5}$: C, 70.77; H, 6.79. Found: C, $69.80 ; \mathrm{H}, 6.82$. Elution with etherbenzene (1:10) gave trans-3,6-bis(o-benzoylbenzyl)-1,2,4,5-tetroxane (7a): mp $154-155^{\circ} \mathrm{C}$. ${ }^{4}$

Reaction of a Mixture of 1 b and 1-Phenylheptene 1-Ozonide (1g) with $\mathrm{ClSO}_{3} \mathrm{H}$. To a solution of $1 \mathrm{~b}(4 \mathrm{mmol})$ and $1 \mathrm{~g}(4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added a solution of $\mathrm{ClSO}_{3} \mathrm{H}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in one portion, and the reaction was continued at $20^{\circ} \mathrm{C}$ for 1 h . After workup the neutral products were isolated by column chromatography on silica gel. Elution with benz-ene-petroleum ether (1:4) afforded $\lg (29 \%)$. Then, the products were eluted with benzene-petroleum ether (1:1). The first fraction contained 1-phenyl-4-exo-pentyl-2,3,5,6,11-pentaoxabicyclo[5.3.1]undecane (23): an oil; $m / e 308\left(\mathrm{M}^{+}\right)$; NMR $\delta 0.84(\mathrm{t}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.04-2.16(\mathrm{~m}$, $14 \mathrm{H}), 5.62(\mathrm{~s}, 1 \mathrm{H}), 5.68(\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.70(\mathrm{~m}, 5 \mathrm{H})$; IR (neat) $1450,1350,1265,1125,1100,1050,945,760,695 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{5}: \mathrm{C}, 66.21 ; \mathrm{H}, 7.85$. Found: $\mathrm{C}, 66.24 ; \mathrm{H}, 8.06$. The second fraction contained 22. Elution wiith ether-benzene (1:10) gave 6b (34\%).

Reaction of $\mathbf{1 b}$ with $1 \mathbf{c}$ in the Presence of SbCl_{5}. The reaction of a mixture of lb (4 mmol) and 1 c (4 mmol) with $\mathrm{SbCl}_{5}(0.12 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (40 mL) was performed at $20^{\circ} \mathrm{C}$ for 30 min . The neutral products were isolated by column chromatography on silica gel with the use of ether-benzene ($1: 10$). The first fraction contained 20. Elution with benzene-ether (3:1) gave trans-3,6-bis(3-benzoylpropyl)-1,2,4,5tetroxane (7b): mp $147-148^{\circ} \mathrm{C} .{ }^{4}$ Then $6 c$ was eluted.

The reaction of a mixture of 1 b and 1 h gave cis-3,6-bis(3-benzoyl-propyl)-1,2,4,5-tetroxane (8 b) (mp $106-107^{\circ} \mathrm{C}^{4}$), 7 b , and trans-3,6-di-pentyl-1,2,4,5-tetroxane (7 h) (mp $34-35^{\circ} \mathrm{C}^{4}$)

Reaction of a Mixture of 1 c and 1 e with $\mathrm{ClSO}_{3} \mathrm{H}$. The neutral products obtained by the reaction of a mixture of 1 c and le were isolated by column chromatography on silica gel with the use of $1: 4$ benzene-petroleum ether and then 10:1 benzene-ether. The first fraction contained 1-methyl-4-phenyl-2,3,5,6,11-pentaoxabicyclo[5.3.1]undecane (24): mp $87.5-89.0^{\circ} \mathrm{C}$ (from methanol); m/e $252\left(\mathrm{M}^{+}\right) ;$NMR $\delta 1.52(\mathrm{~s}, 3 \mathrm{H})$, $1.56-2.20(\mathrm{~m}, 6 \mathrm{H}), 5.48(\mathrm{~s}, 1 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 7.24-7.60(\mathrm{~m}, 5 \mathrm{H})$; IR (KBr) $1440,1405,1215,1190,1150,1100,1010,920,860,760,695$ cm^{-1}. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{5}$: $\mathrm{C}, 61.90 ; \mathrm{H}, 6.39$ Found. $\mathrm{C}, 62.01$; $\mathrm{H}, 6.22$. Elution with ether-benzene (1:3) afforded $\mathbf{6 c}$.

Reaction of a Mixture of 1 c and lg with $\mathrm{ClSO}_{3} \mathrm{H}$. When a mixture of $1 \mathrm{c}(2 \mathrm{mmol})$ and $1 \mathrm{~g}(2 \mathrm{mmol})$ was treated with $\mathrm{ClSO}_{3} \mathrm{H}$ at $20^{\circ} \mathrm{C}$ for 1 h , a mixture of 24, 1-methyl-4-exo-pentyl-2,3,5,6,11-pentaoxabicyclo[5.3.1]undecane (25), and 1 g was obtained. The products were isolated by column chromatography on silica gel. Elution with benzene-petroleum ether ($1: 4$) gave 1 g . Then, the products were eluted with use of benzene ether ($10: 1$). The first fraction contained 25: an oil; $m / e 246$ $\left(\mathrm{M}^{+}\right) ; \mathrm{NMR} \delta 0.88(\mathrm{t}, J=4.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.08-2.04(\mathrm{~m}, 14 \mathrm{H}), 1.44(\mathrm{~s}$, 3 H), $5.38(\mathrm{~s}, 1 \mathrm{H}), 5.62(\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H})$; IR (neat) 1435,1370 , 1225, $1150,1100,935 \mathrm{~cm}^{-4}$. From the second fraction, 24 was isolated. Elution with ether-benzene ($1: 3$) gave 6 c .

Acknowledgment. The authors are grateful to Professor K. Morokuma for the use of the ab initio IMS package which consists of GAUSSIAN 70 , HONDO, energy gradient and optimization programs, and many other routines. All computations have been carried out at the Computer Center of IMS.

[^0]: (1) (a) Osaka University. (b) Institute for Molecular Science.
 (2) (a) Bailey, P. S. "Ozonation in Organic Chemistry"; Academic Press: New York, 1978; Vol. 1. (b) Kobayashi, Y.; Kumadaki, F.; Ohsawa, A.; Hanzawa, Y.; Harada, M.; Iitake, Y. Tetrahedron Lett. 1975, 3001. (c) Story, P. R.; Morrison, W. H. III; Butler. J. M. J. Am. Chem. Soc. 1968, 90, 817.

[^1]: (3) Miura, M.; Nojima, M. J. Chem. Soc., Chem. Commun. 1979, 467.
 (4) Miura, M.; Nojima, M. J. Am. Chem. Soc. 1980, 102, 288.
 (5) Swern, D. "Organic Peroxides"; Wiley: New York, 1970, Vol. 1; 1971, Vol. 2; 1973, Vol. 3.

[^2]: (6) A clear-cut maximum of the activation free energy in the 8 - and $11-$ membered ring region in the ring formation from $0-\omega$-bromoalkoxy phenoxide and $o-\omega$-bromoalkyl phenoxide is displayed by the enthalpy of activation, as the result of an overall medium effect, due to combination of bond angle deformation, bond opposition force, and transannular interactions: Illuminati, G.; Mandoloni, L.; Masci, B. J. Am. Chem. Soc. 1977, 99, 6308.
 (7) Recently the syntheses of new cyclic peroxides have attracted greater notice because of their unique properties including chemiluminescence ${ }^{8}$ and their biological activities. ${ }^{9}$
 (8) (a) Schuster, G. B. Acc. Chem. Res. 1979, 12, 366. (b) Adam, W. Ibid. 1979, 12, 390; (c) Adv. Heterocycl. Chem. 1977, 21, 437. (d) Wasserman, H. H.; Murray, R. W. "Singlet Oxygen"; Academic Press: New York, 1979.
 (9) (a) Nicolaou, K. C.: Gasic, G. P.; Brnette, W. E. Angew. Chem., Int. Ed. Engl. 1978, 17, 293. (b) Adam, W.; Birke, A.; Cadiz. C.; Diaz, S.; Rodriguez, A. J. Org. Chem. 1978, 43, 1978. (c) Salomon, R. G.; Salomon, M. F. J. Am. Chem. Soc. 1977, 99, 3051 1. (d) Porter, N. A.; Gilmore, D. W. Ibid. 1977, 99, 3503.
 (10) The reactivity order of ozonides. as estimated by periodic measurement of the NMR spectra of a mixture of the ozonide and $\mathrm{ClSO}_{3} \mathrm{H}$ in $\mathrm{CD}_{3} \mathrm{OD}$, is as follows: $1 \mathrm{a} . \mathrm{lb}>1 \mathrm{c}>1 \mathrm{~d}, 1 \mathrm{e}, 1 \mathrm{l}, 1 \mathrm{~g}>1 \mathrm{~h}$. It was also confirmed that the reaction proceeds via heterolytic fission of one of the $\mathrm{C}-\mathrm{O}$ bonds of peroxide bridge, from which the more stable carbonium ion forms, to give the corresponding α-methoxy hydroperoxide and the compounds derived from it: Miura, M.; Nojima, M.; Kusabayaslii, M. J. Chem. Soc., Perkin Trans. I, in press. The relative reactivity between 1 a and 1 b could not be obtained by these experiments. Taking account the difference in stability between $2 a$ and $\mathbf{2 b}$, however, it seems that la is more reactive than $\mathbf{1 b}$ (molecular models suggest that the mutual interactions of vicinal hydrogens of the methylene chain is considerably large in $\mathbf{2 b}$. Furthermore, the positive carbon of $\mathbf{2 a}$ is stabilized by two phenyl rings).

[^3]: (11) Bartlett, P. D.; Baumstark, A. L.; Landis, M. E. J. Am. Chem. Soc. 1977, 99, 1890.
 (12) At low temperature the solubility of 3 a in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ is quite low. When the solution is warmed to room temperature, the absorption of the pyrylium ion starts to appear gradually.

[^4]: (13) The signal should be appeared as two quartets because of the geminal coupling and the coupling with H-6. Because of the low solubility of 3a in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$, however, other signals could not be distinguished form the noise.
 (14)' (a) Ward, H. R.; Scherman, P. D., Jr. J. Am. Chem. Soc. 1968, 90, 3812. (b) Olah, G. A.; Calin, M.; O'Brien, D. H. Ibid. 1967, 89, 3582. (c) Ibid. 3586. (d) Olah, G. A.; Bollinger, J. M. Ibid. 1967, 89, 2993. (e) Perst, H. Carbonium Ions 5, 1961-2047.
 (15) In this reaction and the continuing reactions the yields of the products were calculated on the basis of ozonide used.
 (16) One of the reviewers has suggested that the NMR data may be assignable to 5 a . If this were true, the equivalent methylene protons should have been appeared as a doublet. In the case of $\mathbf{5 b}$, the methylene protons attached to benzoyl group should be appeared as a triplet. However, the data are not consistent with the above expectations.

[^5]: (17) As the byproducts, a large amount of complex mixture which contained o-benzoylphenylacetaldehyde and benzaldehyde was obtained. The acid products were the mixture of o-benzoylphenylacetic acid and benzoic acid. These results seem to be reasonable by considering the fact that the peroxidic products are decomposed easily in the presence of 1 mol equiv of $\mathrm{SbCl}_{\mathrm{s}}$: Miura, M.; Nojima, M.; Kusabayashi, S. J. Chem. Soc., Perkin Trans. I, 1980, 1950
 (18) Hehre, W. J.; Stewart, R. F.; Pople, J. A. J. Chem. Phys. 1969, 51, 2657.
 (19) Komornicki, A.; Ishida, K.; Morokuma, K.; Ditchfield, R.; Conrad, M. Chem. Phys. Lett. 1977, 45, 575.

[^6]: (21) Highly relevant with $\mathbf{4 m}$, the structure and the properties of carbonyl oxide (peroxymethylene) have attracted great attention. By the MO calculations, peroxymethylene is shown to be more stable in the cyclic form than the open form. ${ }^{22 a, b, c}$ Really, dioxirane (the cyclic form) has been identified in the reaction of ozone with ethylene at low temperature. ${ }^{22 d}$ It was claimed, however, that the carbonyl oxide with a zwitterionic character is the real species in solution. ${ }^{2 a, 22 e}$ As for syn and anti-alkylperoxymethylenes, an equilibrium in solution phase ozonolysis is excluded. ${ }^{22 b, d}$ From steric reasons, the anti form is expected to be more stable than the syn form. However, the more sophisticated calculations suggest that the syn form of methylperoxymethylene is more stable by $3-4 \mathrm{kcal} / \mathrm{mol}$ than the anti form in the nonpolar solvent. ${ }^{22 c, \text {. }}$
 (22) (a) Hiberty, P. C.; Leforeister, C. J. Am. Chem. Soc. 1978, 100, 2012. (b) Harding, L. B.; Goddard, W. A.; III. Ibid. 1978, 100, 7180. (c) Cremer, D. Ibid. 1979, 101, 7199. (d) Suerram, R. D.; Lovas, F. J. Ibid. 1978, 100, 5117 . (e) Bailey, P. S.; Ferrell, T. M. Ibid. 1978, 100, 899. (f) Bailey, P. S.; Ferrell, T. M.; Rustaiyan, A.; Seyhan, S.; Unruh, L. E. Ibid. 1978, 100 , 894.
 (23) Schaleger, L. L.; Long, F. A. Adv. Phys. Org. Chem. 1963, I, 1-33.
 (24) Pasto, D. J.; Serve, M. P. J. Am. Chem. Soc. 1965, 87, 1515.
 (25) Benson, S. W. "Thermochemical Kinetics", 2nd ed.; Wiley: New York, 1976; pp 65-66.
 (26) Of course, there is some uncertainity when extrapolating the conclusions from the calculations of simple molecules $\mathbf{2 m}$ and $\mathbf{4 m}$ to the large compounds $\mathbf{2 b}$ and $\mathbf{4 b}$. In addition, $\mathbf{2 b}$ and $\mathbf{4 b}$ are polar species, and solvent effects can be energically important and different for two species, altering the relative energy difference between them. In connection with the above, a reviewer has suggested that $\mathbf{2 b}$ and $\mathbf{~} \mathbf{b}$ may readily interconvert (or be in equilibrium). If they are so, the proportion of $\mathbf{2 b}$ in equilibrium should be, however, very high.
 (27) The reaction of a monocyclic ozonide in the presence of an acid catalyst only gives the corresponding 1,2,4,5-tetroxane. ${ }^{4}$

[^7]: (28) The protonated carbonyl oxide, the positive carbon of which is stabilized by carbonyl oxygen participation, may be close to the true species of 4b.

[^8]: (29) Even at $20^{\circ} \mathrm{C}$ the process shown as path b in Scheme V seems to compete with that shown as path a in Scheme V : the NMR spectra of the crude products, after treating $\mathbf{1 b}$ with 0.03 mol equiv of $\mathrm{SbCl}_{\mathrm{f}}$ for 5 min , suggests the existence of $\mathbf{6 b}, 7 \mathbf{7}$, and $8 \mathbf{b}$ in a molar ratio of 5:20:75.
 (30) Criegee, R.; Kerckow, A.; Zinke, H. Chem. Ber. 1955, 88, 1878. (31) Costonguay, J.; Bertrand, M.; Carles, J.; Fizar, S.; Rousseau, Y. Can. J. Chem. 1969, 47, 919 .
 (32) Criegee, R.; Lohaus, G. Justus Liebigs Ann. Chem. 1953, 593, 6.
 (33) Bailey, P. S. Chem. Ber. 1954, 87, 993.

